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MOVEMENT OF GROUND WATER IN AN INHOMOGENEOUS FINITE AQUIFER IN

THE PRESENCE OF A RESERVOIR HEAD AND IRRIGATION

V. K. Rudakov

Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 5, pp. 155~15Y, 1465

A number of problems of nonsteady gravity seepage connected
with water storage and irrigation over homogeneous strata have been
solved by P. Ya. Polubarinova-Kochina [1,2} N. N. Verigin [3,4],
S. F. Aver'yanov [5}, and others, However, less attention has been
paid to ground-water flow in strata with variable properties, even
though these are more common in nature, Of special interest {6] is
is the flow model in which the permeability parameters are treated
as piecewise-~constant over the length of the bed.

Let us divide an aquifer of finite length L. into two zones of dif-
ferent compositiom: zone 1 (0 = X =< I;) with permeability parameters
kj = k; and a? = a}, and zone 2 (I = X = L) with kj = ky and ¢} = ¢
(Fig. 1). Tue impermeable base stratum is horizontal. The depth of
the steady ground-water flow under natural conditions is known from
observations.
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Let us assume that the water table rises instantancously from b,
to yg at x = 0, and from hy, to y), at x = L as a result of the construc-
tion of a reservoir, At the same time, because of nonuniform irriga-
tion the ground-water flow in zone 1 is supplemented at a rate wih
and in zone 2 at a rate wy. We further assume that the depth of water
at the outside edges of the aquifer and the rates of supplé:mcn:ary in-
filtration wi and wj remain constant in time. _

It is required to find the depth of the ground-water flow under the
given conditions,

It is known [4] that the Boussinesq equation for one-dimensional
nonsteady gravity filtration over a horizontal impermeable stratuiy, -
linearized by the Bagrov-Verigin method, coincides with the eqyation
of heat conduction and takes the form
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Here h is the variable depth (head) of the ground warter, tis tine,
i is the soil saturation deficit in the aeration zone, w is the rate of
intake of ground water from above, and i° is.some mean flow deptl.
starting from the superposition principle, we will find the solution
of the problem in the form

yi (e, 0) = 43 D Zugdz, 1y (0w s ),
ya? (v, 1) == /,3,2.; Dug (oo 8y (v o LY. (2)

tiere y(x, t) is the depth of the nunsteady ground-water Hlow i
thie presence of a reservoir head and irrigation, time zero t= U being
taken as the moment at which these effects start 10 vperate, The sub-
scripts 1 and 2 relate to the different cones.

In aceordance with (1), the functions u; and uy are given by the
system of equations

g Buy

(112791-2 + by = T (0<x§ 1)
(o B bt
WETE T T T TR M)

<L),

' - _'ih:’ _ we*he® o we*
leg =27 ="0E = a)e (3
The initial condition is
uy (£, 0) = 0, wuy (&, 0) = O 4)

The conditions at the outside edges of the stratum are

w0 =1hwd—hd), wd, )=ayg—nd. (5)

The conditions at the interface are
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System (3) does not describe all the seepage flow, but only the
additional nonsteady flow due to the reservoir head and the supple-
mentary intake along the length of the bed. In accordance with (2),
this flow is superposed on the natural steady-state ground-water flow.

We will solve the system of second-order partial differential
equations (3) by an operational method {7, 8]. As a result of the La-
place transtormation :
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we get the representative system
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with conditions

Ui (0) = (yo* — ha?)/ 2p, Us(L) =g —h)/2p, (9)

ay aU
Vi) =Us(). kgl =k . (0

solving system (8), we find the L-transforms of the unknown func-
tivns: ’
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To convert to the inverse transforms, we use the Riemann-Mellin
conversion formula, according to which
r+ico
1 ot
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The integrals obtained by substituting in (14) the expressions for
U; and Uy from (11) and (12) may be evaluated by going over to a
closed contour and applying the residue theorem. "According w Cau-
chy's theorem, the determination of these integrals reduces to evalu:
tion of the sum of the residues with respect to simple poles of the in-
tegrand corresponding to the roots of the transcendental equation

th(h Vp)=oth (he V) ==0- (15)
One of the roots of (15) is p = 0. The remaining roots are real
negative numbers p = -,
Substituting the circular for the hyperbolic tangent in (15) and
taking into account its property of periodicity, we get

tg (ah, + am) + o tg (@h, + 7s) = 0, (16)

where m and s are any integers.

Equation (16) has an infinite set of real r00ts ¢y, Olpy Clgsuues
which are distributed symmetrically with respect to the coordinate
origin and do not recur; to each positive root there corresponds an
equal negative root,

In the general case the roots of (18) can be found graphically as
the abscissas of the points of intersection of the curves

y = tg Az, Yy = — O g Ay

In a nummber of cases the transcendental trigonometric equation
(16) reduces to an algebraic equation.

without writing down the inverse transforms, we arrive at the
final form of the equation of the cuive of ground-water depression
under the combined action of a bilateral reservoir head and irrigation:
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The quantity ¥y, represents the limiting depth of ground water as

t — o under the given conditions.
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Let us consider the important practical case of irrigation water
infiltrating at the rate w*over the inner part of the bed only. The
length of this portion ly, = X — X3, where x; and x, are its initial
and end coordinates, Let xy = 0 and x, = I;, i.e., the end of the imi-
gated section coincides with the interface between zones 1 and 2. The
other conditions are as before.

Applying the method described, we get the following equations for
the depth of flow:
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It should be noted that in (21), (22), as in (17), (18), the summa-
tion is over positive roots of Eq, (16),

In the particular case of a homogeneous stratum (ky = ky, a5 = ay,
o =1, from (16) there follows

Un = nng /L N (26)

where n is any positive whole number from 1 to e,

Substituting (26) into (21), (22), we get the equation of the curve
of ground-water depression in a2 homogeneous finite stratum under the
combined action of a bilateral reservoir head and locally intensified
infileration
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where T = a’t/L? is the Fourier number, dimensionless time.
Expressions for yy, for the irrigated and unirrigated parts of the
bed follow from (23)—(25) if one sets k; = k.

The graph of the special function
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is shown in Fig. 2, Atvalues T > 0.3 it is perfectly sufficient to con-
fine oneself to the first term of the series,
The graph of the function
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is given by N. N. Verigin in [9].

In conclusion, we note that the obtained solutions also extend to
the case where the flow is bounded not by a reservoir but by a main
irrigation ditch or a horizontal ideal drain,

The author thanks N, N, Verigin for his interest and valuable
advice.
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